Создано первое отключаемое «жидкое зеркало»


Создано первое отключаемое «жидкое зеркало»

Ученые из Великобритании создали необычные наночастицы, которые могут одновременно быть и прозрачными для света, и превращаться в идеальное зеркало, и опубликовали "рецепт" по их изготовлению в статье в журнале Nature Materials.

"Наночастицы находятся в очень тонком балансе — мы очень долго пытались заставить их вести себя правильно, однако они постоянно склеивались друг с другом, а не равномерно распределялись по раствору. Нам пришлось создать десятки моделей и провести столь же большое число экспериментов для того, чтобы создать действительно управляемый слой наночастиц", — рассказывает Джошуа Эдель (Joshua Edel) из Имперского колледжа Лондона (Великобритания).

Наночастицы и тонкие полоски из некоторых металлов, к примеру, золота или серебра, способны поглощать видимый свет и передавать его дальше в виде других форм электромагнитного излучения. В это время на поверхности металла возникают так называемые плазмоны — коллективные колебания электронов, способные поглощать и испускать энергию в виде световых волн.

Одним из самых ярких примеров работы плазмонов считается древнеримский кубок Ликурга — сосуд из стекла, меняющего прозрачность в зависимости от освещения. Другие примеры их работы — микроволновый "плащ-невидимка", созданный в 2014 году, и прозрачный футуристический дисплей на плазмонах, созданный в MIT.

Эдель и его коллеги, в том числе российский физик Алексей Корнышев, очень долгое время пытались ликвидировать один из главных недостатков плазмонов — почти полную невозможность управлять их свойствами после того, как они были изготовлены.

Как объясняют ученые, то, как плазмоны взаимодействуют со светом и какой именно свет они поглощают или пропускают через себя, зависит от двух их характеристик — размеров и расстояния между индивидуальными наночастицами. Физики достаточно давно научились управлять положением отдельных наночастиц, однако "дирижирование" миллионами и миллиардами плазмонов оставалось нерешенной задачей.

Корнышев, Эдель и их единомышленники смогли решить эту проблему, используя две остроумные идеи — они поместили наночастицы не на поверхность другого металла или кремния, как это обычно делают ученые в опытах с плазмонами, а в водный раствор, и создали особую химическую среду, позволявшую управлять положением всех частиц в растворе при помощи импульсов электричества.

Создание этого "жидкого зеркала" началось с того, что ученые заметили, что обычные наночастицы золота, покрытые полимерной пленкой, могут или отталкиваться друг от друга или сближаться друг с другом, не склеиваясь, если их зарядить и поместить в особый электролит, состоящий из двух несмешиваемых жидкостей с разными электрическими свойствами.

В состоянии покоя эта жидкость заставляет кусочки золота удаляться друг от друга на достаточно большие расстояния, в результате чего она становится прозрачной для волн видимого света. Если же через нее пропустить электрический ток, то тогда положение ионов в электролите поменяется, и часть заряженных частиц увлечет за собой частицы золота и выстроит и в своеобразный плоский лист.

Частицы металла в нем будут находиться достаточно близко для того, чтобы они могли поглощать фотоны видимого света и повторно излучать их в обратном направлении, что будет делать поверхность раствора зеркальной. При этом они не склеятся друг с другом, что позволяет сделать зеркало прозрачным, отключив ток или поменяв местами полюса у его источника.

Подобные структуры, как отмечают физики, позволяют не только создавать "электрические" зеркала, но и множество других экзотическх оптических приборов с полностью управляемой оптикой, которые сегодня считаются фантастикой. Такие плазмонные устройства, по мнению Эделя и Корнышева, могут в разы ускорить скорость работы глобальной сети, создать новые телескопы и стать основой для световых компьютеров будущего.

Rambler



Запись была опубликована в рубрике СМИ. Ссылка на запись.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*